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.. The Need for Dimension Reduction

Many data sets are a collection of n vectors x = (x1, ..., xp)
that we try to model as IID outcomes of X = (X1, ...,Xp).
Standard theory imagined small vaues of p and medium to
large values of n, with p < n.
Now, frequently, p may be so large that no realistic sample
size will ever be obtained for conventional inference.
X may be a waveform, a huge graph, an image, or a
document. Often data sets are multitype, meaning they
combine qualitatively different classes of data.
Thus, the complexity of the data (and model) means
standard inference won’t work. Thus, dimension
reduction/variable selection becomes essential.
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.. A Third Alternative

Kernel methods have become popular because they don’t
do variable selection or feature extraction. They do data
point selection!
The model (such as it is) is found by using a kernel
evaluated at a well-selected subset of the data points.
The basic solution is

F̂ (x) =
n∑

i=1

αiK (xi , x) in a RKHS with kernel K

In effect, a kernel function K (x , x ′) is a continuously
parametrized collection of functions. For each fixed x ′,
Kx ′(x) is a sort of basis element.
If p is large, searching F = {Kx ′(x)|x ∈ IRp} to return a
linear combination of a few elements can be useful.
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.. Sparsity ctd.

In a Representer Theorem solution, one can remove
explanatory variables from x that do not contribute enough.
This is a sort of double sparsity.
It is standard to extract information from the covariates by
themselves before bringing in the response.
The goal here is to condense the information in the Xis into
functions that have the information most relevant to
modeling, regardless of the response.
Then the information in the Y s can be used for variable
selection on the extracted features.
Variance-bias trade-off: Variable selection throws out
variables that have too much variance for the amount of
bias they eliminate. Feature extraction finds functions to
get an even lower MSE from using fewer features.
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.. Definition

PCs, is one of a collection of techniques that extend linear
regression by trying to identify underlying factors that
explain a response.
X does not to be normal, but PC’s is a second moment
technique.
The idea behind PCs is to find a rotation of the original
coordinate system in which to express the p-variate Xis so
that each coordinate expresses as much of the variability
in the X as a linear combination of the p entries can.
Let U = (U1, ...,Up) be a random vector and write U = AX
with Var(X ) = Σ.
Task: Find A = (a1, .., ap)

T with aj = (aj,1, ...,aj,p) such that

∀j = 1, ..., p Uj = aT
j X =

p∑
k=1

aj,kXk .
B. Clarke Dimension Reduction (Mostly)
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.. Properties

We make Var(Uj) = aT
j Σaj is as high as possible subject to

being uncorrelated with the other Uj = aT
j Xs; i.e.,

Cov(Uj ,Uk ) = aT
j Σak = 0 for j ̸= k .

The Var(Uj)s are decreasing.
Thus, PCs are eigenvectors of the covariance matrix,
ranked in order of the size of their eigenvalues.
Linear combinations with high variance are the ones that
affect the response the most.
The variables least worth including are those with the
smallest variability.
If most of the variation comes from the first few PCs then it
is enough to use them because the other linear
combinations vary little from subject to subject.
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.. PC Theorem Informal

PCs can be peeled off one at a time from Σ by a sequence
of optimizations. Start by finding U1 = aT

1 X , where

a1 = arg max
∥a∥=1

Var(aT X ). (1)

The a1’s from (1) is the direction in the X -space along
which the variability is maximized; i.e., the eigenvector of Σ
with maximal eigenvalue.
To find U2, or equivalently a2, set

a2 = arg max
∥a∥=1,Cov(aT

1 X ,aT X)=0
Var(aT X ). (2)

Now, U2 = aT
2 X . WLOG: a1 ⊥ a2 when λ1 > λ2. Later PCs

are defined analogously; aT X is assumed uncorrelated
with all the previous ajXs.
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.. PC Theorem, Formal

Provided Σ is PD, it has a full set of p real eigenvalues
λ1 ≥ . . . ≥ λp > 0.
The correct A has columns given by the eigenvectors e1,...,
ep of Σ and the variances of the PCs are the eigenvalues.

Theorem: Let Cov(X ) = Σ have eigenvectors e1, .. ., ep with
corresponding eigenvalues λ1 ≥ . . . ≥ λp > 0. Then:
(i) The j-th PC is Uj = eT

j X = ej,1X1 + . . .+ej,pXp for j = 1, ..., p.
(ii) The variances of the Uj are Var(Uj) = eT

j Σej = λj .
(iii) The covariances between the PCs are
Cov(Uj ,Uk ) = eT

j Σek = 0.
There are at least 2 proofs of this theorem. One is based
on Lagrange multipliers the other is cleaner but rests on an
auxiliary inequality.
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.. Key Properties

How do PC’s characterize variability in X?
Clause (ii) leads us to regard λj/

∑
λj as the proportion of

variation of X explained by Uj .
It is not just that PCs re-express the explanatory X so that
the biggest contributions to variance can be identified.
PCs permit sparsity in many cases because one can, for
instance, regress on relatively few of the PCs or
summarize data by using the PCs with, say, variances
above a prechosen threshold.
One can use thresholding arguments to get sparse
representations for the PCs themselves.
Two properties of PC’s are helpful.
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Theorem: Suppose Cov(X ) = Σ and Σ has p eigenvalues
λ1 ≥ . . . ≥ λp with corresponding eigenvectors
ej = (ej,1, ...,ej,p)

T .
(i) The sum of the variances of the Ujs is

p∑
j=1

Var(Uj) = λ1 + · · ·+ λp =

p∑
j=1

Var(Xj) =

p∑
j=1

σjj .

(ii) The correlation between Uj and Xk is

ρ(Uj ,Xk ) =
ejk

√
λj√

σkk
.

(ii) invites one to set some ejks to zero when they are small
in absolute value, in addition to using only the first few PCs.
The entries of X that get the highest weight in the first few
normalized PC’s might have more information.
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.. Normal Case Interpretation

If X ∼ Np(µ,Σ), then the density is constant on ellipses

(x − µ)TΣ−1(x − µ) = C2.

Ellipses of this form have axes along ±C
√
λjej .

Set µ = 0, and use the spectral representation of Σ as
Σ =

∑p
j=1 λjejeT

j to give

C2 = xTΣ−1x =

p∑
j=1

1
λj
(eT

j x)2,

eT
j x is the component of x in the direction of ej , the PCs.

Writing uj = eT
j x gives

C2 =
1
λ1

u2
1 + · · ·+ 1

λp
u2

p .
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The PCs Uj = ejX lie in the directions of the axes of a
constant-density ellipse. Any geometric point on the j th
axis of the ellipse has coordinates in the x-frame
proportional to ej and in the u-frame (of the PCs) has
coordinates proportional to aj .
It is often better to use the correlation matrix ρ than to use
Σ. Also, since neither ρ nor Σ are usually available, it is
important to be able to obtain PCs from data. These two
variations are amenable to the same procedure as before.
Second, the point of PCs is to use only the first few, say K .
There are several ways to choose K .
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.. Correlation PCs and Empirical PCs

Instead of decomposing Σ, consider applying the method
for deriving PCs to the correlation matrix for X , say ρ. Write
Zj = (Xj −µj)/

√
σjj so that Z = (Z1, ...,Zp) = V−1/2(X −µ),

where V = diag(
√
σ11, . . . ,

√
σpp). Now, EZ = 0 and

Cov(Z ) = V−1/2ΣV−1/2 = ρ, the correlation matrix of X .
This puts the Zjs are on the same scale. Otherwise, Xjs
with larger scales will dominate an analysis.
The PCs found from Z are not, in general, numerically the
same as those found from X . Nevertheless, their forms
and properties are the same and follow by proofs that are
only slight modifications from before.
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.. Same Theorem for Correlation Matrices

Theorem: Let (λ1,e1),..., (λp,ep) be the eigenvalue,
eigenvector pairs from ρ, with λ1 ≥ . . . ≥ λp ≥ 0 . Then,
(i) The PCs of ρ are Uj = eT

j Z = eT
j V−1/2(X − µ).

(ii) Variances are preserved in the sense that∑
j Var(Uj) =

∑
j Var(Zj) = p.

(iii) Correlations between Uj and Zk are expressed in terms of
the eigenvalues and eigenvectors of ρ, ρ(Uj ,Zk ) = ej,k

√
λj . �
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Similarly, empirical forms of the PCs can be given. These
result from using the PC procedure on estimates of Σ or ρ.
Consider Σ̂ = (1/n)

∑n
i=1 xixT

i or ρ̂ = V̂ 1/2Σ̂V̂ 1/2, although
any other estimate of Σ or ρ̂ could be used as well.
The empirical PCs for X are Uj = ê1X , where êj is the
eigenvector corresponding to the j th largest eigenvalue λ̂j

of Σ̂ or ρ̂. The other properties of the PCs remain the same
in both cases.
Estimates of λj ’s and ej ’s are asymptotically normal,
centered at the true values with variances

2λ2
j and λj

p∑
k=1,k ̸=j

[λk/(λk − λj)
2]akaT

k ,

respectively, where ak is a vector of zeros with one in the
k th entry.

B. Clarke Dimension Reduction (Mostly)



. . . . . .

Too Much Information
Principal Components

Factor Analysis
Visualization

Kernel Methods

.. How Many PCs?

The point of PCs is dimension reduction. So, let K be the
number of PCs to be retained in a model, 1 ≤ K ≤ p. If
K = p, there is no reduction. If K = 1, then a
one-dimensional model, perhaps involving all the
components of X , is the result. In most cases, K ≥ 2 to
capture all the useful variability in X .
The three common ways to choose K are as follows. First,
one can fix a proportion α of the variation to be explained
by the PCs and let K be the smallest number of PCs
required to achieve that. Choose K just large enough that

λ̂1 + . . .+ λ̂K∑p
j=1 λ̂j

≥ α.

This is somewhat arbitrary.
B. Clarke Dimension Reduction (Mostly)
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Second, one can produce a scree plot. This is a graph of
λ̂j as a function of j . If the points are connected, then one
can look for the knee in the curve, the point at which
adding another PC adds relatively little explanatory power.
Third, is to invoke a physical interpretation. One can look at
the λ̂js and recall that they represent the width of an ellipse
of constant density, at least in the normal case. Thus, if a
λ̂j is small, the ellipse is narrow in the j th dimension and so
the j th dimension may be neglected for physical reasons if
the most important contributing components in êj are
known to be unimportant at that scale.
By the same logic, if λ̂1 ≈ λ̂2, it would be unreasonable to
drop λ̂2 without dropping λ̂1 unless there were reason to
believe that the components in ê2 that had the greatest
contribution were not helpful enough.

B. Clarke Dimension Reduction (Mostly)



. . . . . .

Too Much Information
Principal Components

Factor Analysis
Visualization

Kernel Methods

.. Factor Analysis

Heuristically, the idea of factor analysis (FA) is to partition
X into K strings of components
(X1, ...,Xp1),...,(XpK−1+1, ...,Xp) with p = pK with the
property that the correlations within each string are high
and the correlations between components from different
strings are low. Summarize each string by a single ‘factor’.
Thus, FA is a generalization of PCs in which, rather than
seeking a full-rank linear transformation with
second-moment properties, one allows non-full-rank linear
transformations.
Consider modeling X as

X − µ = Λf + T ,

where EX = µ.
B. Clarke Dimension Reduction (Mostly)
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More explicitly, for the j = 1, ...,p entries of X , (3) is

Xj =
K∑

k=1

λj,k fk + Tj + µj .

Here, Λ is a fixed p × K matrix of “loadings".
The loadings λj,k indicate how much Xj is affected by fk ; if
several Xjs have high values of λj,k for a given factor fk ,
then one may surmise that those Xjs are redundant.
The random K × 1 vector f represents the common factors
that underlie x .
The random p × 1 vector T represents the specific factors
that underlie the particular experiment performed. Both T
and f are unobservable.
The goal is to explain the outcomes of X using fewer
variables, the K unobserved factors in f , with K << p.
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Standardize the random quantities f and T

Ef = 0,ET = 0,

and the second moments are

Cov(f ,T ) = 0,Cov(Tj ,Tj ′) = 0 for j ̸= j ′,Cov(f ) = IdK×K .

Usually set Var(T ) = diag(ψ1, ..., ψp) = ψ.
The assumptions give second-moment properties of X :

Cov(X , f ) = Λ, Cov(Xj ,Xℓ) = λj,1λℓ,1 + . . .+ λj,Kλℓ,K

and
Cov(Xj ,Fℓ) = λj,ℓ and Σ = ΛΛT + ψ.
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Σ = ΛΛT + ψ means that p variables correspond to K
variables, and the p(p − 1)/2 entries in the variance matrix
are reduced to K (K − 1)/2 + p entries. Want K << p.
It follows that, for j = 1, ...p,

Xj =
K∑

k=1

λj,k fk + Tj − µj

leading to

σj,j =
K∑

k=1

λ2
j,k + ψj = h2

j + ψj . (3)

The h2
j is called the communality; it represents the part of

the variance of Xj that comes from the underlying factors.
ψi is the specific variance, from Tj , summarizing deviations
that the common factors fk , can’t express.
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.. Reduction to PC’s

FA reduces to PCs when T = 0 and the last p − K
eigenvalues of Σ = Var(X ) are zero. In this case, write
Σ = ΓDΓT with the last eigenvalues in D zero,
dK+1, ...,dp = 0, so that the upper left K × K block of D is
D1 = diag(d1, ..., dK ) and only the upper left K ×K block Γ1
of Γ matters.
Since PCs come from writing U = ΓT (X − µ), it follows that
X − µ = ΓU = Γ1U1 + Γ2U2, where U1 and U2 are the first
K and last p − K components of U and Γ2 is the lower right
block of Γ. Thus, U2 is trivial: It has mean and variance 0.
So, X − µ = Γ1U1, which is

X = Γ1D1/2
1 D−1/2

1 U1 + µ1.

Setting Λ = Γ1D1/2
1 and f = D−1/2

2 U1 gives the reduction.
B. Clarke Dimension Reduction (Mostly)
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There are three sources of ambiguity in FA models: the
choices of Λ, K , and f .
In fact, Λ is only determined up to an orthogonal
transformation. That is, let K ≥ 2 and let V be any K × K
orthogonal matrix, VV T = V T V = IK×K .
The FA model can be written as

X − µ = (ΛV )(V T f ) + T = Λ∗f ∗ + T (4)

since E(f ∗) = 0 and Cov(f ∗) = V T Cov(f )V = IK×K . The
model is not identifiable.
We get Σ = ΛΛ + ψ = Λ∗Λ∗ + ψ. So, the communalities
given by ΛΛ = Λ∗Λ∗ are also unchanged by V .
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.. Finding Λ and ψ

Extra conditions must be imposed to get unique estimates
of Λ and ψ. In some cases, Λ can be purposefully rotated
by V to make the results interpretable.
More generally, estimating Λ and ψ is essential because
they permit estimation of the factor scores fj in f .
The estimation procedures rest on Σ̂. Let x̄ denote the
sample mean from x1, ..., xn, and denote the sample
covariance matrix by Σ̂ and the sample correlation matrix
by R̂. Setting σ̂j,j = sj,j , write

Σ̂ = Λ̂Λ̂T + ψ̂ and σ̂j,j =
K∑

k=1

λ̂2
j,k + ψ̂j,j .

An analogous expression can be written for R̂.
B. Clarke Dimension Reduction (Mostly)
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.. Principal Factors

The problem is to identify estimators Λ̂ and ψ̂ given K .
PF’s are related to PCs. In fact, when ψ = 0 or K = p, the
eigenvector decomposition in PCs gives the FA
representation.
Basic idea is to start with the spectral decomposition of Σ
and write

Σ =

p∑
j=1

λjejeT
j ≈

K∑
j=1

λjejeT
j

= (
√
λ1e1, . . . ,

√
λ1eK )× (

√
λ1eT

1 , . . . ,
√
λ1eK )

T

= ΛΛ.
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Note that the j th column of Λ is
√
λ1ej .

That is, the j th factor loading comes from the j th PC and is
exact if K = p, in which case ψ = 0.
Of course, this is usually done on Σ̂ = (1/n)

∑n
i=1 xixT

i
using êj and λ̂j to give Λ̂ for a given K .

In this case, ψ̂ is usually not zero and it is typical to set
ψ̂j = sjj −

∑K
k=1 λ̂

2
j,k so diag(Σ̂) = diag(Λ̂Λ̂ + ψ̂).

The communalities are then ĥ2
j =

∑K
k=1 λ̂

2
jk .

The same procedure can be applied to the correlation
matrix ρ.
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.. Finding K

As with PCs, the degree of dimension reduction depends
on how small K can be chosen. This method is really only
for principal factors.
When the FA model is found using PCs, the natural way to
evaluate how well it fits is to look at how good the
approximation of Σ is. It can be shown that

∥Σ̂− Λ̂Λ̂− ψ̂∥ ≤ λ̂2
K+1 + . . .+ λ̂2

p, (5)

in which the norm is the sum of squares of the entries of
the matrix. As K increases, the bound tightens.
However, the goal is small K , meaning that the
contributions from a small number of factors fj to the
sample variance should be large enough that the other
factors can be neglected.

B. Clarke Dimension Reduction (Mostly)



. . . . . .

Too Much Information
Principal Components

Factor Analysis
Visualization

Kernel Methods

The contribution to sjj = s2
j from the first factor f1 is λ̂2

j1.
So, the contribution of f1 to the total sample variance
trace(Σ̂) = s11 + . . .+ spp is

p∑
j=1

λ̂2
j1 = (

√
λ̂1ê1)

T (

√
λ̂1ê1) = λ̂1,

the (1,1) entry of Λ̂Λ̂T , where Λ̂ = (

√
λ̂1ê1), . . . , (

√
λ̂pêp),

and this holds for 2, 3,..., p.
The proportion of the total sample variance attributable to
the j th factor is λ̂j/

∑p
j=1 sjj and λ̂j/p when factor analysis

is applied to Σ̂ or ρ̂, respectively. Since the eigenvalues are
decreasing, the way we chose K for PC’s cantinue to apply.
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.. Estimating Factor Scores

The choice of K gives the degree of dimension reduction
from p, but it remains to convert the p-dimensional data
points xi to new points f̂i , called factor scores, in K
dimensions.
Note that the choice of K , Λ, and ψ is determined by all the
xis, so adding another data point may change the model.
The basic problem is that there are n known values, the
xis, but 2n unknown values, the ϵis and the fis. One way to
convert xis to factor scores (estimates) is by weighted least
squares. Start with fixed values for Λ, µ, and ψ and treat T
as if it were an error term, ϵ. So, the model is
Xi − µ = Λfi + ϵi for i = 1, . . . , n and consider determining fi
for xi .
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The least squares strategy for overcoming the
indeterminacy is as follows. Observe that the sum of
squares due to error is

SSE =

p∑
j=1

ϵ2j /ψj = ϵψ−1ϵ = (X − µ− Λf )Tψ−1(X − µ− Λf ).

Minimizing it gives fmin = (ΛTψ−1Λ)−1ΛTψ−1(x − µ). So,
for i = 1, ...,n, when Λ and ψ are estimated by the ML
method (and Λ̂ψ̂−1Λ = ∆̂), it is natural to set

f̂i = (Λ̂T ψ̂−1Λ̂)−1Λ̂T ψ̂−1(xi − x).

When the principal factors are used, the ψ̂ drops out: The
results are

f̂i = (Λ̂T Λ̂)−1Λ̂T (xi − x̄)

for Σ, which can be recognized as the first K scaled PCs
evaluated at xi . B. Clarke Dimension Reduction (Mostly)
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.. Examples

Consider the following data analyzed in Abdi (2003). There
are five wines and seven measurements are made on each
by a panel of experts: how pleasing it is, how well it goes
with meat or dessert, its price, sweetness, alcohol content
and acidity.

Wine Hedonic Meat Dessert Price Sugar Alcohol Acid
1 14 7 8 7 7 13 7
2 10 7 6 4 3 14 7
3 8 5 5 10 5 12 5
4 2 4 7 16 7 11 3
5 6 2 4 13 3 10 3
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The principal component solution indicates that 93.90 %
percent of the variance is explained by the first two
components.
The matrix of factor loadings can be found using factanal.
The 2 × 7 table of factor loadings is given below:

Hedonic Meat Dessert Price Sugar Alcohol Acid
1 -0.40 -0.45 -0.26 0.42 -0.05 -0.44 -0.45
2 0.117 -0.117 -0.597 -0.31 -.72 0.06 0.09
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When you have complex data and no idea what models
might be appropriate take a look.
There may in fact be a very intelligible model; however,
teasing it out from the data in the absence of physical
knowledge may be exceedingly difficult.
Visualization, like dimension reduction and clustering, can
be regarded as a collection of search strategies to find
some regularity in the data strong enough that modeling
can say something about it.
Consider linear regression data (Yi ,Xi) for n = 97, with 27
points on a straight line and 70 points generated with
noise. There are two subsets. However, naive regression
will miss the subsets, defaulting to an average solution.
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.. Two Clusters
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y=3*x+11
y = 3*x+2 + error
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.. What to do?

It would be nice to be able to cherry-pick.
Maybe use a clustering technique to find (hopefully two)
clusters. Then, choose the largest cluster and fit a
regression model.
Provided the model fits well, remove outliers from the
cluster according to some reasonable criterion and search
the other clusters for points that fit the model well, putting
them into the first cluster if they do not worsen fit much.
Reclustering the remaining points and repeating the
procedure might reveal the two-cluster structure.
In general, the goodness-of-fit measure should not depend
on the sample size or p (e.g. adjusted R2); (ii) modeling
within a cluster should trade-off sample size and number of
variables, and (iii) K is uncertain.
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If this kind of procedure were used with the data and the
first cluster with 70 points had been found, the graph of
most reasonable assessments of fit would look something
like the next figure as data points from the smaller cluster
were added. This plot is based on using R2 for fitness with
the data from before.
The total sample size used here is 80; the first 70
observations are from the noisy cluster and the last 10
observations were generated exactly on the line, as
indicated by the knee in the curve.
Although this procedure is not formal, it does accurately
reveal the structure of the data. In principle, one could
propose a model for how adding wrong model data affects
statistics such as R2, generate a curve with a knee and
test whether the points added beyond the knee were
sufficiently different to reflect a different model.
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Figure: How accumulating data within a model affects fit. The first 70
data points fit. Past 70 the data points were from the smaller cluster.
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.. Warning

Making diagrams from data uses information. This means
that the probability of type I error in subsequent testing will
be larger than the stated α and the actual standard errors
of estimators will be larger. Inferences after data snooping
will necessarily be much weaker.
Visualization, dimension reduction, clustering ise
information faster than calculating individual statistics and
really should be done selectively if downstream inference
is of great importance.
OK for presenting results or to search for structure to
model. But downstream formal inferences are affected.
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.. Elementary Visualization

Here are several common ways to represent data with little
or no processing. These techniques are most useful when
the dimension is between 4 and, say, 20 or so.
A profile in p dimensions is a representation of a vector of
the form (x1, ..., xp) in which the values xj are plotted
adjacent to each other. This can be presented as a bar
graph with p bars on a common axis or as a polygonal line.
A star in p dimensions is a representation of (x1, ..., xp) in
which the values xj are plotted on axes drawn from a
center point. Any two adjacent axes have the same angle
between them. The values xj are noted on the axes and
then connected to form a p-gon.
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Doing this for a data set gives n p-gons that may reveal
patterns, depending on the ordering of the xjs.
Using data on 17 classes of household expenditures from
nine Canadian cities for 2006, the next figure shows one
star with 17 points for each city. Household expenditures
means dollars per year spent on food, shelter, clothing,
and so forth.
The figure after it shows the profiles for the cities plotted on
the same axis. The four peaks are suggestive, but a little
misleading if read too closely: The four largest peaks at 2,
6, 9, and 15 correspond to shelter, transportation,
recreation, and taxes. However, the first variable, food,
should be a peak: It is higher than all the other variables,
except for shelter, transportation, and taxes, which is the
biggest expense.
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Canadian Household Expenditures

Ottawa Toronto Montreal

Quebec Vancouver Edmonton

Saskatoon Calgary Victoria

Figure: Calgary’s star fans out the most uniformly over the classes,
while Quebec City’s star has only five points of any real size; they are
food, shelter, transportation, insurance and pensions, and taxes.
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Figure: The lower panel shows the profiles. There are four peaks, but
the point is that across Canadian cities the distribution of
expenditures is fairly similar.
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.. Heatmap

A heatmap is a matrix of values that have been color
coded, usually so that higher values are brighter and lower
values are darker.
Usually the rows and columns are grouped so that those in
the same group are next to each other; this leads to figures
comprised of homogeneous rectangles.
Heatmaps are often good for presenting data once they
have been analyzed, but often do not reveal much because
the patterns tend to be weak.
Heatmap for Motor Trend 1974 data. The variables were:
mpg; number of cylinders; disp, displacement (cu.in.); hp;
rear axle ratio; wt; qsec, 1/4 mile time; vs; transmission (0
= automatic, 1 = manual); number of forward gears; and
number of carburetors.
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Both the models and the measurements have been
clustered. Roughly, the models of cars are in three
clusters: The bottom cluster (Duster to Maserati) consists
of cars that are heavy or have big engines; the top cluster
(Honda Civic to Toyota Corona) consists of lighter cars with
smaller engines; and the middle cluster (Valiant to
Mercedes 450SL) is in between.
The clustering on the measurements on the cars is less
clear: The pair at the bottom are measures of power and
the next two are measures of performance, but it is unclear
what the block of seven (cyl to gear) represents.
The heatmap itself shows a clear dividing line between the
Honda Civic and the Mercedes 450SL: In each row, if the
left part is light, the right part is dark, or vice versa. Maybe
the middle cluster has more in common with the right
cluster than the left?
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Heatmap for Mtcars data

Figure: Heatmap with clustering on the models and variables done
separately. Darker regions correspond to higher values.
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.. Projections

p dimensional data are mostly understood by looking at
their projections onto two dimensions.
So, we want to find the directions along which the
projection of the data will reveal its features.
Consider projecting p-dimensional points (xi,1, ..., xi,p) with
a p × p-dimensional idempotent matrix D.
A value xi,j0 may be an outlier in one plane but not in
another. (Think of a curve in the horizontal plane and one
point several units above it. )
One way to search for outliers is through all pairwise
scatterplots from projections into the coordinate planes:
p(p − 1)/2 − p scatterplots of (xj , xj ′) for j ′ > j , the upper
triangle of a matrix of scatterplots.
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Another way to do this is to spin the data. The idea is to
project the data points into a three-dimensional subspace
and then rotate the projections.
Rotation can be interactive (user controlled) or automated.
Systematically doing this so that all representative
projections of the data are seen is called a Grand Tour.
Watching the rotations in continuous time reveals the
context of informative projections as well as the projected
points themselves.
Consider the Australian crab data available from
www.ggobi.org/book/. The data consist of 200
measurements on a sample of crabs from Australia. Each
measurement is five-dimensional: frontal lobe length, FL;
rear width, RW; carapace length, CL; carapace width, CW;
and body depth, BD.
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The data are five dimensional, one can load them into the
ggobi or rggobi visualization system, which can be
downloaded freely from www.ggobi.org.
GGobi can generate Grand Tours. Doing this, one can
watch the way the data forms change shape as the
perspective is rotated. GGobi can be paused at interesting
projections; it also gives the unit vectors defining each
projection.
First, the left [anel was found by watching the Tour and
stopping it at a clearly delineated shape.
Then the picture was rotated by dragging the cursor the
right way. This generated the other two panels on the right.
The next step would be to color one of the arms of the vee
in the left and do the rotation again to see how the points
changed their relative positions. Doing this permits
separation of each arm of the vee.
After some work, it can be determined that the data look
roughly like four long thin cones coming out of the origin in
four directions that are only seen to separate clearly past
about 20 units.
The four cones actually correspond to two species of
crabs, one for each sex. The shorter two cones are the
females and the longer two are the males.
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The first right panel shows that the circles and triangles
form the lower arm of the vee and the squares and
diamonds form the upper arm.
The rotation to the second panel on the left brings the
circles alone to the top, the squares and triangles to the
middle region, and the diamonds alone to the bottom.
Continuing the rotation, the third panel on the left shows
that the circles and squares are on the top and the
triangles and diamonds are on the bottom.
It is left as an exercise to use GGobi to find a direction
(down the center) in which the cones collapse into four
blobs, one for each species-sex pair.
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Figure: The left panel shows a view found from GGobi. The right
panel is the same view but with the cones labeled.
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Figure: The left panel shows a view from GGobi. The right panel is
the same view but with the cones labeled.
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Figure: The left panels shows a view found from GGobi. The right
panels is the same view but with the cones labeled.
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.. Chernoff Faces

Chernoff (1973) recognized that people are exquisitely
sensitive to small differences in faces and proposed that
this be harnessed to visualize high-dimensional data.
Thus, under a mapping, a p-dimensional data point is
converted to a list of values that specify features of a
human face. For instance, the values of x1,i may represent
the height of a face, the values of x2,i might represent the
width of a face, and so forth. Then, each face generated
from the data points has a unique expression.
Using the Canadian household expenditure data for which
stars and profiles were plotted before, gives the Chernoff
faces in the next figure.
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Figure: Chernoff faces for household expenditures for nine Canadian
cities. Note that food and shelter primarily determine the size of the
face.
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Remember: A Hilbert space H is a complete normed linear
space where the norm comes from an inner product.
Riesz Representation Theorem: Every continuous linear
functional L on H has a unique kenel gL so that
L(f ) = ⟨gL, f ⟩.
Let [x ] be the evaluation functional, [x ](f ) = f (x).
RRT implies ∃Kx so that ⟨Kx , f ⟩ = f (x).
The symmetric function K (x , y) = Kx(y) = ⟨Kx ,Kx⟩ is the
reproducing kernel of H because

∀x ⟨K (x , ·), f (·)⟩ = f (x).

You can start with a Hilbert space and find its reproducing
kernel or you can start with a reproducing kernel and
construct its Hilbert space. K is always symmetric, positive
definite, and reproducing.
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There is a huge RKHS-based approach to function
approximation. One major result:
Representer Theorem: Let Ω : [0,∞) → IR be a strictly
monotonic increasing function, X be a set, and
c : (X × IR2)n → IR ∪ {∞} be an arbitrary loss function.
Then each minimizer f ∈ H of the regularized risk
functional

c((x1, y1, f (x1)), · · · , (xn, yn, f (xn))) + Ω(∥f∥H)

admits a representation of the form

f (x) =
n∑

i=1

αiK (xi , x).

The form of the solution in an RKHS is determined up to n
constants, independent of p.
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There are many applications of the Representer Theorem
in classification, regression, dimension reduction etc etc.
Let’s look at the Relevance Vector Machine (RVM) of
Tipping (2001).
To present the RVM, choose a kernel and write the ‘model’

Y =
n∑

j=1

wjK (x , xj) + ϵ,

in which w0 has been set to zero.
This is not a model in the strict classical sense.
Want w = (w1, · · · ,wk ) & h(x) = (K (x , x∗

1 ), . . . ,K (x , x∗
k ))

′

wth k << n so that we can ‘fit’

Y = w⊥h(x) + ϵ
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Many ways to estimate w and hence choose which vectors
xi are ‘relevant’ i.e., appear in the solution.
First, a regularization approach is possible, as in LASSO
for instance. More later.
A simpler approach is truncation using a posterior
threshold in a Bayesian context.
That is, put a Normal prior on w to induce closed-form
expressions for almost all the important estimation and
prediction equations.
To specify the RVM regression, write

Y = Hw + ϵ,

where y = (y1, · · · , yn)
T , w = (w1, · · · ,wn)

T , and
ϵ = (ϵ1, · · · , ϵn)T .
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The design matrix is

H =

 K (x1, x1) · · · K (x1, xn)
...

...
...

K (xn, x1) · · · K (xn, xn)

 .
If the error term is ϵi

IID∼ N(0, σ2) then the likelihood function
for an IID sample is

p(y |H,w , σ2) = N(y |Hw , σ2In).

The parameter vector θ = (w , σ2) is (n + 1)-dimensional,
and there are n data points for estimating it. This leads to
non-unique solutions. This problem disappears
(technically) if the variance σ2 is known, but this is
unrealistic in practice.
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An alternative Bayesian solution uses independent
zero-mean normal priors for the coefficients in wi . Set

p(wi |αi) = N(wi |0, α−1
i ),

so that p(w |α) = Nn(0,D), in which
D = Diag(α−1

1 , . . . , α−1
n ) and α denotes the vector

(α1, . . . , αn)
T .

Normal priors don’t usually give sparsity. However, using a
Gamma hyperprior on each αi yields a Student-t marginal
for for wi when αi is integrated out, and this leads to
sparsity of a sort.
Even though each individual Student t for wi is no
candidate for sparsity, their product p(w) =

∏n
i=1 p(wi) has

a surface that induces a sparsity pressure on w .
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That is, choose

p(αi |a,b) = Gamma(αi |a,b).

The marginal prior density for wi is

p(wi) =

∫
p(wi |αi)p(αi)dαi

=
baΓ(a + 1/2)
(2π)1/2Γ(a)

(b + w2
i /2)

−(a+(1/2)).

So, the joint prior for the w is a product of independent
Student-t distributions over the wi ’s.
This prior (surprisingly) exhibits sparsity.
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.. Two Dimensional Case

Figure: The two-dimensional marginal prior for w = (w1,w2)
T for

a = 1 and b = 1.
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Now, relevant vectors can be obtained. Suppose a weight
wi has variance α−1

i tending to zero. Then, the distribution
of wi is sharply peaked at zero, and the corresponding
vector xi is irrelevant. All the vectors for which the variance
α−1

i does not tend to zero are relevant.
In practice, the RVM is easily determined by truncation:
Choose a large threshold for αi , and set α−1

i to zero if αi is
greater than the threshold.
That is, relevant vectors are those for which the data do not
permit the distribution of αi to be too concentrated at zero.
It remains to be seen how the prior combines with the
likelihood to give a sparse posterior density.
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Assume σ2 is known. The posterior is

p(w , α|y) ∝ p(y |H,w , σ2)p(w |α)p(α|a,b)

where the Bayes model under normal noise with variance
σ2 is

p(y |H,w , σ2) = (2πσ2)−
n
2 e− 1

2σ2 ∥y−Hw∥2
,

p(w |α) =
n∏

i=1

p(wi |αi) and p(α|a,b) =
n∏

i=1

p(αi |a,b).

The marginal posterior p(w |y) is obtained from p(w , α|y)
by integration and specification of a and b.
Want p(w |y) to have the same form as in p(w) in the
figure. That is, want the effect of the prior specification to
favor values of α along the axes or at the origin.
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Even with σ2 known, the marginal posteriors,

p(w |y) =
∫

p(w , α|y)dα =
p(y |w)p(w)

p(y)

and
p(α|y) =

∫
p(w , α|y)dw =

p(y |α)p(α)
p(y)

,

cannot be computed in closed form.
However, empirical Bayes approximation techniques can
be used to obtain estimates of w and α. Alternatively,
Markov chain Monte Carlo techniques can also be used to
explore the joint posterior p(w , α|y).
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A sandard derivation gives that the conditional posterior
density for w is

p(w |α, σ2, y) = N(w ;µ,V ),

where

V = (HTσ2InH + A)−1 and µ = VHTσ2.Iny .

A more elaborate yet still standard derivation shows that
the marginal likelihood p(y|α, σ2) is given by

p(y |α, σ2) = N(y ;0, σ2In + HA−1HT),

where A = Diag(α1, . . . , αn) = D−1.
The two most important quantities, namely α and σ2, are
estimated by finding the values that maximize ln p(y |α, σ2).
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As shown in Tipping (2001), it turns out that finding

(α̂, σ̂2) = arg max
α,σ2

ln p(y |α, σ2)

reduces to a two-step iterative procedure: Initialize α and
σ2, and use them to obtain the posterior covariance matrix
V and the posterior mean µ. Then, let µi be the i th
component of µ and γi = 1 − αiVii .
The iteration proceeds by setting

α
(new)
i =

γi

µ2
i
, and (σ2)(new) =

∥y − Hµ∥2

n −
∑n

i=1 γi
,

and then recalculating until convergence.
Using these prior specifications, RVM typically gives a
regression function sparser than other methods and
therefore often gives better predictive performance.
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