Computational Approaches to Understanding Interaction and Development


Computational Approaches to Understanding Interaction and Development

Daniel Messinger, Lynn Perry, et al. contributed to the book series “Advances in Child Development Behavior,” Volume 62 “New Methods and Approaches for Studying Child Development,” Chapter 7 “Computational Approaches to Understanding Interaction and Development,” which focuses on vocal interaction and development in children.


Daniel Messinger, Director, IDSC Social and Behavioral Data Science ProgramAudio-visual recording and location tracking produce enormous quantities of digital data with which researchers can document children’s everyday interactions in naturalistic settings and assessment contexts. Machine learning and other computational approaches can produce replicable, automated measurements of these big behavioral data. The economies of scale afforded by repeated automated measurements offer a potent approach to investigating linkages between real-time behavior and developmental change. In our work, automated measurement of audio from child-worn recorders—which quantify the frequency of child and adult speech and index its phonemic complexity—are paired with ultrawide radio tracking of children’s location and interpersonal orientation. Applications of objective measurement indicate the influence of adult behavior in both expert ratings of attachment behavior and ratings of autism severity, suggesting the role of dyadic factors in these “child” assessments. In the preschool classroom, location/orientation measures provide data-driven measures of children’s social contact, fertile ground for vocal interactions. Both the velocity of children’s movement toward one another and their social contact with one another evidence homophily: children with autism spectrum disorder, other developmental disabilities, and typically developing children were more likely to interact with children in the same group even in inclusive preschool classrooms designed to promote interchange between all children. In the vocal domain, the frequency of peer speech and the phonemic complexity of teacher speech predict the frequency and phonemic complexity of children’s own speech over multiple timescales. Moreover, children’s own speech predicts their assessed language abilities across disability groups, suggesting how everyday interactions facilitate development.Lynn K. Perry

Read more.


Messinger, Daniel* & Perry, Lynn* & Mitsven, Samantha & Tao, Y. & Moffitt, J. & Fasano, Regina & Custode, Stephanie & Jerry, C.M. (2022). Computational approaches to understanding interaction and development. In Gilmore, R. & Lockman, J. (Eds.), Advances in Child Development and Behavior: New Approaches to Studying Child Development (Vol. 62). Academic Press. *Indicates joint first authorship.