xSAT COVID-19 Early Detection WEBINAR 9/8/2020

xSAT eXperimental Situational Awareness Tool, University of Miami Institute for Data Science and Computing

xSAT COVID-19 Early Detection WEBINAR 9/8/2020

Chris Mader, IDSC Software Engineering Director will present an overview of the recent project to develop the xSAT eXperimental Situational Awareness Tool in a webinar on Tuesday, September 8, 2020, 3:00-4:00 PM on Zoom. A first-of-its-kind early-detection platform for COVID-19, xSAT will enable local residents to self-report symptoms, and researchers and decision makers to visualize data and identify hot spots. By tracking social media posts, analyzing public health data, and presenting the data via an interactive online dashboard, University researchers and others will have the ability to identify new clusters of COVID-19 cases in real time, rather than days or weeks after an outbreak.

Register Now

“With COVID-19, we need to get ahead of the curve, not just flatten it,” said IDSC Director Nick Tsinoremas. “This important public health initiative is also designed to quickly identify new infectious disease problems in the future.”

Funded with a rapid response grant from the Office of the Vice Provost for Research, the early-detection platform is being deployed in Miami-Dade County, but will expand to include data from other geographic areas.

“We want to provide health care leaders, physicians, and the public with timely data for making decisions,” said Tsinoremas. “Our platform will complement the contact tracing systems that focus on individuals who test positive for the coronavirus.”

A Web-Based Application
Chris MaderFor the platform, the IDSC team built a web-based situational awareness app that makes it easier to explore the data related to an infectious disease outbreak, said Chris Mader, IDSC’s Director of Software Engineering. “We are taking COVID-19 data from multiple sources and giving users a variety of ways to visualize the information,” he said.

For instance, the dashboard can show the locations of recent cases sorted by age, gender, and other variables. It also can separate Florida residents from visitors to help determine if infections were related to travel. Residents may find the “Symptom Tracker” tool useful in seeing how the outbreak is affecting their neighborhood, while the application’s “Emerging Clusters” feature could help decision makers direct tracking, tracing, and other resources. Each tool includes maps, graphs, tables, and interpretations of the data on an interactive dashboard.

“In terms of scale, we can cover the entire state for some types of data, or look at individual Miami-Dade neighborhoods for other information.” Mader said, adding that the application can also generate alerts to indicate new cases. “We are bringing geospatial and clinical data together so they be examined at the same time.”

Social Media Posts
Along with the clinical data, the early-detection platform brings in the human element through social media posts. “We are correlating the COVID-19 cases with feeds on Twitter, Instagram, Facebook, Reddit, and other sites,” said Joel Zysman, Director of Advanced Computing at IDSC. “We plan to also make a self-reporting application available for users of Apple and Android smartphones.”

Joel ZysmanTo train the University’s Triton supercomputer to identify local COVID-related posts, Zysman said his team created a data set based on pandemic-related posts from New York. “Now that we’ve trained the machine on data we know is good, even a few hundred Miami-Dade posts will allow us to draw meaningful conclusions,” he said. “There are many reasons one can have a fever or a cough, but if many people are feeling ill in certain neighborhoods, that’s a good indication for health authorities to take a closer look.”

Designed to reflect Miami-Dade’s demographic diversity, Zysman noted that the platform’s database includes Spanish and Haitian Creole posts, in addition to English. “We don’t want to over- or under-represent COVID-19 cases in any neighborhoods,” he said. “We are also being careful to adjust for population density, as there will be more cases in urban than rural areas.” Without IDSC’s supercomputing resources, Zysman added, the early-detection platform could not sort through the vast trove of de-identified clinical data and social media posts. “Triton (the University’s latest Supercomputer) provides the horsepower for applying machine learning techniques and artificial intelligence (AI) strategies to the early-detection issue,” he said. “In the emerging field of infodemiology, AI, natural language processing, and sentiment analysis can be used to track positive and negative affect, as well as geospatial clusters of symptoms.”

Engaging the Community
Dr. Tsinoremas said the interdisciplinary project integrates expertise from a variety of fields, including Computer Science, Information Engineering, Statistics, and Data Science. “We also want to mobilize the communities within the University, South Florida, health providers, and the public, to collaborate in the continued development and use of this powerful interactive platform,” he said. “We look forward to working with many partners and stakeholders to make this first-of-its-kind initiative the most useful it can be.” 